Package: EZtune 3.1.2
EZtune: Tunes AdaBoost, Elastic Net, Support Vector Machines, and Gradient Boosting Machines
Contains two functions that are intended to make tuning supervised learning methods easy. The eztune function uses a genetic algorithm or Hooke-Jeeves optimizer to find the best set of tuning parameters. The user can choose the optimizer, the learning method, and if optimization will be based on accuracy obtained through validation error, cross validation, or resubstitution. The function eztune_cv will compute a cross validated error rate. The purpose of eztune_cv is to provide a cross validated accuracy or MSE when resubstitution or validation data are used for optimization because error measures from both approaches can be misleading.
Authors:
EZtune_3.1.2.tar.gz
EZtune_3.1.2.zip(r-4.5)EZtune_3.1.2.zip(r-4.4)EZtune_3.1.2.zip(r-4.3)
EZtune_3.1.2.tgz(r-4.4-any)EZtune_3.1.2.tgz(r-4.3-any)
EZtune_3.1.2.tar.gz(r-4.5-noble)EZtune_3.1.2.tar.gz(r-4.4-noble)
EZtune_3.1.2.tgz(r-4.4-emscripten)EZtune_3.1.2.tgz(r-4.3-emscripten)
EZtune.pdf |EZtune.html✨
EZtune/json (API)
# Install 'EZtune' in R: |
install.packages('EZtune', repos = c('https://jillbo1000.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/jillbo1000/eztune/issues
- lichen - Lichen data from the Current Vegetation Survey
- lichenTest - Test dataset for lichen data
- mullein - Mullein data from Lava Beds National Monument
- mulleinTest - Mullein data from Lava Beds National Monument - test dataset
Last updated 3 years agofrom:6fe00c1d0d. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 05 2024 |
R-4.5-win | NOTE | Nov 05 2024 |
R-4.5-linux | NOTE | Nov 05 2024 |
R-4.4-win | NOTE | Nov 05 2024 |
R-4.4-mac | NOTE | Nov 05 2024 |
R-4.3-win | NOTE | Nov 05 2024 |
R-4.3-mac | NOTE | Nov 05 2024 |
Dependencies:adabase64encBiocManagerBiocStylebitopsbookdownbslibcachemcaToolsclassclicodetoolscrayondigeste1071evaluatefastmapfontawesomeforeachfsGAgbmglmnetgluegplotsgtoolshighrhtmltoolsiteratorsjquerylibjsonliteKernSmoothknitrlatticelifecycleMASSMatrixmemoisemimenloptrnumDerivoptimxpracmaproxyR6rappdirsRcppRcppArmadilloRcppEigenrlangrmarkdownROCRrpartsassshapesurvivaltinytexxfunyaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Supervised Learning Function | eztune |
Cross Validated Accuracy for Supervised Learning Model | eztune_cv |
Lichen data from the Current Vegetation Survey | lichen |
Test dataset for lichen data | lichenTest |
Mullein data from Lava Beds National Monument | mullein |
Mullein data from Lava Beds National Monument - test dataset | mulleinTest |
Prediction function for EZtune | predict.eztune |